Extensions 1→N→G→Q→1 with N=S3×C23 and Q=C10

Direct product G=N×Q with N=S3×C23 and Q=C10
dρLabelID
S3×C23×C10240S3xC2^3xC10480,1211

Semidirect products G=N:Q with N=S3×C23 and Q=C10
extensionφ:Q→Out NdρLabelID
(S3×C23)⋊1C10 = C5×D6⋊D4φ: C10/C5C2 ⊆ Out S3×C23120(S3xC2^3):1C10480,761
(S3×C23)⋊2C10 = C5×C232D6φ: C10/C5C2 ⊆ Out S3×C23120(S3xC2^3):2C10480,816
(S3×C23)⋊3C10 = C2×C10×D12φ: C10/C5C2 ⊆ Out S3×C23240(S3xC2^3):3C10480,1152
(S3×C23)⋊4C10 = S3×D4×C10φ: C10/C5C2 ⊆ Out S3×C23120(S3xC2^3):4C10480,1154
(S3×C23)⋊5C10 = C2×C10×C3⋊D4φ: C10/C5C2 ⊆ Out S3×C23240(S3xC2^3):5C10480,1164

Non-split extensions G=N.Q with N=S3×C23 and Q=C10
extensionφ:Q→Out NdρLabelID
(S3×C23).1C10 = C5×S3×C22⋊C4φ: C10/C5C2 ⊆ Out S3×C23120(S3xC2^3).1C10480,759
(S3×C23).2C10 = C10×D6⋊C4φ: C10/C5C2 ⊆ Out S3×C23240(S3xC2^3).2C10480,806
(S3×C23).3C10 = S3×C22×C20φ: trivial image240(S3xC2^3).3C10480,1151

׿
×
𝔽